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An algorithm for the application of the mesh refinement technique to finite-
difference calculation of the wave equation is presented via the introduction of a
new “extended” FDTD scheme. This scheme can be viewed as an extension of the
Yee scheme using a new set of variables relating to the direction of propagation of
the waves along an axis. Because of this additional information, this scheme allows a
more natural implementation of the mesh refinement technique. The extended scheme
is presented for both a one-dimensional and a multidimensional system. The mesh
refinement algorithm is given in one dimension, and the performances are compared
to other proposed schemes.c© 2001 Academic Press
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1. INTRODUCTION

The finite-difference time-domain technique is widely used to solve the wave equation
numerically, especially in the form of the Yee algorithm [2] which relies on centered finite
difference of field quantities defined on a staggered mesh. This algorithm is limited, however,
to a uniform Cartesian mesh. In this article, we present a method of incorporating the mesh
refinement technique. Mesh refinement involves a sudden jump of resolution at the interface
of two grids with different mesh sizes. Hence, a wave traveling across this interface will
have two different experiences depending on its direction of propagation perpendicular to
the interface. It will enter a region of either finer or coarser resolution. In the first case, all
wavelengths should be transmitted, whereas in the second case, all wavelengths that are
not resolved on the coarser grid should be absorbed at the interface. It is not obvious a
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priori that an algorithm identically treating both directions of propagation (e.g., as the Yee
algorithm) can handle these requirements. Our strategy is to define a more general algorithm
(containing the Yee scheme as a particular case) which treats the signal differently depending
on its direction of propagation along one of the principal axis of calculation, allowing the
mesh refinement technique to be incorporated naturally. If needed, a method of coupling
this “extended” (or “directional”) algorithm to the Yee scheme has been developed and will
be presented in another article.

This article is divided in two parts. In the first part, we define and analyze the properties
of the extended scheme. In the second part, we develop a boundary condition for the use of
mesh refinement with the extended scheme.

In the first part, we begin by deriving the extended scheme for a 1D system. From general
considerations, we define the mathematical form of the solution and show that, at the lowest
level of approximation, the solution corresponds to an algorithm with three independent
parameters. It is shown that this algorithm is very general and reduces to well-known al-
gorithms (such as the Yee scheme, the one-way absorbing boundary condition [5], or the
Berenger PML [1]) for some values of these parameters. A relation linking the parameters
is then derived from the properties of the wave equation, and it is shown that, unless specific
conditions apply, two different relations hold depending on the direction of propagation of
the wave. This result is used in the next section to justify (at least theoretically) the devel-
opment of the extended scheme, which is then defined and derived in its infinitesimal and
finite-difference forms. The scheme is extended to a system of higher dimensionality by a de-
composition of the overall system into one-dimensional wave equations, allowing the di-
rect applications of the algorithm developed in the preceding section. For application to
electromagnetic calculations, a link between the extended scheme and Maxwell equations
is established.

In the second part of the article, a boundary condition for the use of the mesh refinement
technique with the extended scheme is developed in one dimension, first in the case of spatial
refinement only and then in the case of space–time refinement. The performances of both
schemes are compared to those of possible schemes which are not “directional.” It is recalled
that “undirectional” algorithms are potentially unstable for “sandwich” configurations (a
fine grid embedded between two coarse grids), a very likely configuration for practical use,
because of high-frequency trapping (and possible amplification). Our directional scheme
avoids by construction this instability.

1.1. Notations

We will consider a quantity A discretized on a space–time regular grid and notedAi
j , Ai

jk ,
or Ai

jkl for, respectively, a 1-, 2-, or 3-dimensional system and wherei is the time index and
j, k, l are the space indices alongx, y, andz, respectively.

One defines the discrete operators of finite-difference1t and1x and the operators of
finite-average〈E〉t and〈E〉x as

1t ≡ Ai+1
j − Ai

j

δt
; 1x ≡ Ai

j+1− Ai
j

δx
(1)

〈E〉t ≡
Ai+1

j + Ai
j

2
; 〈E〉x ≡

Ai
j+1+ Ai

j

2
, (2)

whereδt andδx are the time step and mesh size alongx, y, andz, respectively.
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2. PART I: DESCRIPTION OF THE EXTENDED SCHEME

2.1. In One Dimension

We consider the centered finite-difference discretization of the wave equation

∂2E

∂t2
= ∂2E

∂x2
≡
{
∂E

∂t
= ∂B

∂x
; ∂B

∂t
= ∂E

∂x

}
(3)

on a staggered mesh (see Fig. 1). We assume that the solution ofEi+1 is explicit (i.e., it
does not depend on terms withi + 1 or more) and is a linear function of the form

Ei+1
j = α1Ei

j + β11Bi+1/2
j+1/2− β12Bi+1/2

j−1/2+ β13Bi+1/2
j+3/2− β14Bi+1/2

j−3/2 · · ·
+ α2Ei−1

j + β21Bi−1/2
j+1/2− β22Bi−1/2

j−1/2+ β23Bi−1/2
j+3/2− β24Bi−1/2

j−3/2 · · ·
· · · · · · · · · · ·
· · · · · · · · · · ·
· · · · · · · · · · · (4)

For numerical reasons, the algorithm should be as local (in time and in space) as possible,
and we consider in this paper the subset

Ei+1
j = αEi

j + β1Bi+1/2
j+1/2− β2Bi+1/2

j−1/2. (5)

FIG. 1. Diagram showing the positions ofE andB on the discrete space–time grid.E andB are staggered
both in space and in time.
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Remark. This finite-difference equation is the centered finite-difference discretization
of the infinitesimal equation

∂E

∂t
= σE E + ∂B

∂x
+ σB B, (6)

since it rewrites as

Ei+1
j − Ei

j

δt
= σE

Ei+1
j + Ei

j

2
+ Bi+1/2

j+1/2− Bi+1/2
j−1/2

δx
+ σB

Bi+1/2
j+1/2+ Bi+1/2

j−1/2

2
(7)

or

1t E = σE〈E〉t +1x B+ σB〈B〉x, (8)

with 
σE = 2

δt

(
α−1
α+1

)
1
δx = 1

δt

(
β1+β2

α+1

)
σB = 2

δt

(
β1−β2

α+1

)
.

(9)

Remark. This formulation reduces to well-known algorithms for particular values of
the set of parameters(α, β1, β2) or (σE, δx, σB). For example, it reduces to

• the Yee scheme

Ei+1
j = Ei

j +
δt

δx

(
Bi+1/2

j+1/2− Bi+1/2
j−1/2

)
(10)

for (α, β1, β2) = (1, δtδx , δtδx ),
• the one-way “Sommerfeld” outgoing-wave boundary condition

Ei+1
j =

(
1− 2δt

δt + δx
)

Ei
j −

2δt

δt + δx Bi+1/2
j−1/2 (11)

with (α, β1, β2) = (1− 2δt
δt+δx , 0,

2δt
δt+δx ) for waves traveling forward and

Ei+1
j =

(
1− 2δt

δt + δx
)

Ei
j +

2δt

δt + δx Bi+1/2
j+1/2 (12)

with (α, β1, β2) = (1− 2δt
δt+δx ,

2δt
δt+δx , 0) for waves traveling backward,

• the Berenger multilayer PML boundary condition

Ei+1
j − Ei

j

δt
= σ Ei+1

j + Ei
j

2
+ Bi+1/2

j+1/2− Bi+1/2
j−1/2

δx
(13)

for (σE, δx, σB) = (σ, δx, 0).
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Remark. We can reinterpret the one-way boundary condition using this formalism as
follows.

When considering the sets(σE, δx, σB) corresponding to the sets (α, β1, β2) of the one-
way absorbing condition, we have

(α, β1, β2) =
(

1− 2δt

δt + δx , 0,
2δt

δt + δx
)
⇔ (σE, δx, σB) =

(
− 2

δx
, δx,− 2

δx

)
(14)

(α, β1, β2) =
(

1− 2δt

δt + δx ,
2δt

δt + δx , 0
)
⇔ (σE, δx, σB) =

(
− 2

δx
, δx,

2

δx

)
.

Plugging these coefficients into (7), we retrieve the one-way absorbing condition. Because
this is an approximation of the wave equation, we can consider thatE = −B for waves
propagating forward andE = B for waves propagating backward. This gives (withσ =
σE = ±σB = − 2

δx )

Ei+1
j − Ei

j

δt
= σ Ei+1

j + Ei
j

2
+ Bi+1/2

j+1/2− Bi+1/2
j−1/2

δx
− σ Ei+1/2

j+1/2+ Ei+1/2
j−1/2

2
, (15)

which is the discretization of

∂E

∂t
= σE + ∂B

∂x
− σE. (16)

We see then that we can interpret the 1D one-way absorbing condition as the centered
finite-difference discretization of a redundant form of the wave equation. Two terms (σE
and−σE), which cancel each other at the infinitesimal limit, are added to the equation.
The first term is computed as an average in timeσE ≡ 0.5σ(Ei+1

j + Ei
j ), while the latter is

computed as an average in space−σE ≡ −0.5σ(Ei+1/2
j+1/2+ Ei+1/2

j−1/2). The use of the relations
E = −B andE = B for the waves propagating forward and backward, respectively, gives
the final one-way absorbing algorithm. Identically, we can derive an ingoing-wave boundary
condition by reversing the sign ofσ .

2.1.1. A Simple Relation Linking the Coefficients

As we will show now, a simple relation, coming from the properties of the wave equation,
links the coefficientsα, β1, andβ2.

If we consider the propagation of an Heaviside step of amplitudeH traveling forward,
we do not know the details of the response of the system for any set (α, β1, β2) but we know
from the properties of the wave equation that, after an infinite time, all the values must have
exactly relaxed to the valueH for the magnetic fieldB and−H for the electric fieldE (we
haveE = −B for waves traveling forward), giving the relation (true after an infinite time),
from Eq. (5),

−H = −αH + β1H − β2H, (17)

and finally,

α = 1+ β1− β2. (18)
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The same analysis with waves traveling backward gives

α = 1− β1+ β2. (19)

These relations hold in vacuum, and we can check that they are verified in the following
cases.

• The Yee scheme:(α, β1, β2) = (1, δtδx , δtδx ).
• The one-way absorbing conditions:(α, β1, β2) = (1− 2δt

δt+δx , 0,
2δt
δt+δx ) for waves

propagating forward or(α, β1, β2) = (1− 2δt
δt+δx ,

2δt
δt+δx , 0) for waves propagating back-

ward.

In the formalism of Eq. (8), the conditions become, plugging (18) and (19), respectively,
into (9)

σB = σE for waves traveling forward (20)

σB = −σE for waves traveling backward. (21)

2.1.2. A “Directional” System of Equations

The preceding analysis shows that, unlessβ1 = β2 (which is true only whenσB = σE =
0 in (7)), two different equations apply to the descriptions of waves going forward and
backward. For this reason, we will develop now what we call a “directional” (or “extended”)
system of equations in order to describe fully the system for any values ofβ1 andβ2.

We will describe the wave equation in vacuum

∂B

∂t
= ∂E

∂x
≡ ∂B

∂t
= σB B+ ∂E

∂x
− σB B

(22)
∂E

∂t
= ∂B

∂x
− J ≡ ∂E

∂t
= σE E + ∂B

∂x
− σE E − J.

The second set is clearly equivalent to the first one; we have simply added and substracted
the same term. Although this will have an effect at the discretized level, it has no effect at
the infinitesimal level, ensuring that we will really approximate the wave equation.

Let us callE+ andB+ the electric and magnetic fields of waves going forward andE−

andB− the electric and magnetic fields of waves going backward, and use the equivalent
set

E = E+ + E−

δE = E+ − E−
(23)

B = B+ + B−

δB = B+ − B−.

Because we have the relationsE+ = −B+ andE− = B−, we also haveE = −δB and
B = −δE, and we can rewrite (22) as

∂B

∂t
= σB B+ ∂E

∂x
+ σBδE

(24)
∂E

∂t
= σE E + ∂B

∂x
+ σEδB− J.
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Still using the relationsE = −δB andB = −δE, this gives, forδE andδB,

∂δE

∂t
= σEδE + ∂δB

∂x
+ σE B

(25)
∂δB

∂t
= σBδB+ ∂δE

∂x
+ σB E + J.

The systems (24) and (25) form a complete set of equations for the set of variables
(E, δE, B, δB), which can be discretized as

1t B = σB〈B〉t +1x E + σB〈δE〉x
1t E = σE〈E〉t +1x B+ σE〈δB〉x − J

(26)
1tδE = σE〈δE〉t +1xδB+ σE〈B〉x
1tδB = σB〈δB〉t +1xδE + σB〈E〉x + 〈〈J〉x〉t .

A detailed analysis of this system (see Appendix), when in steady-state with a constant
sourceJ, shows that a term must be added in the discretized system for consistency: The
set then becomes

1t B = σB〈B〉t +1x E + σB〈δE〉x + σB1x〈J〉t
1t E = σE〈E〉t +1x B+ σE〈δB〉x − J

(27)
1tδE = σE〈δE〉t +1xδB+ σE〈B〉x
1tδB = σB〈δB〉t +1xδE + σB〈E〉x + 〈〈J〉x〉t .

The new term1x〈J〉t is purely numeric; it tends toward zero at the infinitesimal limit.
Because of the terms1x〈J〉t and〈〈J〉x〉t , this system is not fully explicit and may present

some difficulty for the implementation. For this reason, we derive an equivalent system that
is fully explicit.

We first determine the finite-difference form of∂δB/∂t from∂B/∂t usingB = B+ + B−.
From

∂B

∂t
= σB B+ ∂E

∂x
+ σBδE (28)

we get

∂B+

∂t
= σB B+ + ∂E+

∂x
+ σB E+ (29)

∂B−

∂t
= σB B− + ∂E−

∂x
− σB E− (30)

and the discretization gives

1t B
+ = σB〈B+〉t +1x E+ + σB〈E+〉x (31)

1t B
− = σB〈B−〉t +1x E− − σB〈E−〉x. (32)
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Let us decompose the fieldE in a propagative partEw and a nonpropagative source partEs

such that, for a sourceJ located atj0, we haveEw = E+w + E−w = E+( j > j0)+ E−( j <
j0) andEs = E+s + E−s = E+( j = j0)+ E−( j = j0). (Remark: because of isotropy of the
system, we haveE+( j = j0) = E−( j = j0).)

The variableδE = E+ − E− is rewritten asδE = δEw + δEs, where

δEw = E+( j > j0)− E−( j < j0) (33)

and

δEs = E+( j = j0)− E−( j = j0) = 0. (34)

We remark that

E = Ew + Es (35)

δE = δEw + δEs = δEw. (36)

From (29) and (30), we can write

1t B
+ = σB〈B+〉t +1x(E

+
w + E+s )+ σB〈E+w + E+s 〉x (37)

1t B
− = σB〈B−〉t +1x(E

−
w + E−s )− σB〈E−w + E−s 〉x. (38)

For aδB located atj + 1/2, the source of a signal propagating forward will be located
at j (so thatE+s ( j + 1) = 0), while the source of a signal propagating backward will be
located atj + 1 (so thatE−s ( j ) = 0). We can write more explicitly

1t B
+ = σB〈B+〉t +

(
E+ i+1
w j+1− E+ i+1

w j − E+ i+1
s j

)/
δx

+ σB
(
E+ i+1
w j+1 + E+ i+1

s j+1 + E+ i+1
w j + E+ i+1

s j

)/
2 (39)

1t B
− = σB〈B−〉t +

(
E− i+1
w j+1 + E− i+1

s j+1 − E− i+1
w j

)/
δx

− σB
(
E− i+1
w j+1 + E− i+1

s j+1 + E− i+1
w j + E− i+1

s j

)/
2 (40)

or

1t B
+ = σB〈B+〉t +

(
E+ i+1
w j+1 − E+ i+1

w j

)/
δx

+ σB
(
E+ i+1
w j+1 + E+ i+1

s j+1 + E+ i+1
w j + E+ i+1

s j

)/
2− E+ i+1

s j

/
δx (41)

1t B
− = σB〈B−〉t +

(
E− i+1
w j+1 − E− i+1

w j

)/
δx

− σB
(
E− i+1
w j+1 + E− i+1

s j+1 + E− i+1
w j + E− i+1

s j

)/
2+ E− i+1

s j+1

/
δx. (42)

Subtracting the two, we get

1tδB = σB〈δB〉t +
(
δEi+1

w j+1− δEi+1
w j

)/
δx

+ σB
(
Ei+1
w j+1+ Ei+1

s j+1+ Ei+1
w j + Ei+1

s j

)/
2− (E+ i+1

s j + E− i+1
s j+1

)/
δx. (43)

Using (35) and (36), this can be rewritten in the more compact form

1tδB = σB〈δB〉t +1xδE + σB〈E〉x − 2〈Es〉x
δx

. (44)
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Applying the same analysis to the numerical correction inB(t), we finally obtain the
system

1t B = σB〈B〉t +1x E + σB〈δE〉x − 0.5σB1x Es

1t E = σE〈E〉t +1x B+ σE〈δB〉x − J
(45)

1tδE = σE〈δE〉t +1xδB+ σE〈B〉x
1tδB = σB〈δB〉t +1xδE + σB〈E〉x − 2〈Es〉x

δx
.

We still have no equation to updateEs in this system. Because of (36),δE contains no
information onEs, and this one cannot be retrieved from a linear combination ofE and
δE. Ideally, a wave equation should be solved for eachEs. This is practically impossible.
Instead, we truncate the wave equation to solve for eachEs with a one-way ABC. We
computeEs as

1t Es = 2 · Bs/δx − J
(46)

1t Bs = − 2

δx
〈Bs〉t − 2Es/δx.

We created only one extra variableBs on which we apply the one-way ABC.
The two systems (45) and (46) form a complete set, which is fully explicit.

2.1.3. Properties of the System

Dispersion relation. All the equations in (45) have the same form, and so we can restrict
ourselves to the analysis of only one of them (the terms 0.5σB1x Es, J and2〈Es〉x

δx are source
terms that do not affect the present analysis).

Considering the equation

1t E = σ 〈E〉t +1x B+ σ 〈δB〉x (47)

and assuming the propagation of a wave of the formE0ei (ωt−kx), we obtain the dispersion
relation (considering thatE = −δB)

sin
(
ωδt
2

)
δt

− sin
(

kδx
2

)
δx

+ 0.5σ i cos

(
ωδt

2

)
− 0.5σ i cos

(
kδx

2

)
= 0, (48)

or equivalently,

r 2− Br − C = 0, (49)

which gives an analytic solution forω(k) of the form

ω = −2i

δt
ln r, (50)

where

r = 0.5(B±
√

B2+ 4C), (51)

with

B = δt/δx

1− σδt/2
(
eikδx/2− e−ikδx/2

)− σδt/2

1− σδt/2
(
eikδx/2+ e−ikδx/2

)
(52)

C = 1+ σδt/2
1− σδt/2. (53)



AN EXTENDED FDTD SCHEME FOR THE WAVE EQUATION 81

FIG. 2. Dispersion relation solution (real and imaginary parts) of the extended scheme,σ varying between
−3/δx and 3/δx. There is damping forσ < 0 and instability forσ > 0.

The analytic solution for (51) using the positive sign2 was used to plot the curvesω(k)
on Fig. 2 forσ varying between−3./δx and 3./δx.

Considering the real part, when the modulus ofσ increases, the speed of waves becomes
closer to the continuous limit(ω = k), up to a certain value ofσ , where the curves become
entirely above theω = k curve. Considering the imaginary part, there is some damping
(increasing with frequency) forσ negative while the system becomes unstable forσ positive.
The reason for the instability can be intuitively understood by remarking that when this form
of the general equation,

Ei+1
j = αEi

j + β
(

Bi+1/2
j+1/2− Bi+1/2

j−1/2

)
+ γ

(
δBi+1/2

j+1/2+ δBi+1/2
j−1/2

)
, (54)

where

α = 1+ σ1t/2

1− σ1t/2
, (55)

is considered,σ positive corresponds toα greater than 1.
Settingσ to a negative value will help to provide simulations that are less noisy by

damping high frequencies (see example in 2D below). This will also help, along with the
fact that the speed of high-frequency waves (real part) is closer to its correct value, to reduce
the numerical Cerenkov instability that may occur with relativistic particles [7].

Absorbing boundary condition.When the equation

Ei+1
j − Ei

j

δt
= σ Ei+1

j + Ei
j

2
+ Bi+1/2

j+1/2− Bi+1/2
j−1/2

δx
− σ δBi+1/2

j+1/2+ δBi+1/2
j−1/2

2
(56)

is considered, the termBi+1/2
j+1/2 or Bi+1/2

j−1/2 disappears forσ = −2/δx (depending on the
direction of the wave propagation), giving the relations

Ei+1
j =

(
1− 2δt

δt + δx
)

Ei
j +
(

2δt

δt + δx
)

Bi+1/2
j+1/2 (57)

2 The solution with the minus sign is known as the “parasitic” solution (see [6]); as it does not change our
general conclusions, we neglect further consideration.
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for waves propagating backward and

Ei+1
j =

(
1− 2δt

δt + δx
)

Ei
j −
(

2δt

δt + δx
)

Bi+1/2
j−1/2 (58)

for waves propagating forward. Equation (57) can be used at the left boundary and Eq. (58)
at the right boundary to absorb outgoing waves.

2.2. Extension to Higher Dimension

We now develop a scheme that we apply to a wave equation and not directly to Maxwell
equations. To avoid confusion, we change notation and consider a wave equation
on the scalar variablef (x, y, z) with an intermediate vector variableEg (x, y, z)= [gx, gy,

gz](x, y, z). The extension to Maxwell equations is explained in a following section.
The scheme that we have developed in the preceding section applies to a one-dimensional

system. The extension to a higher dimension implies that, for one direction, all the infor-
mation coming from the coupling with another direction is included in the source term. A
three-dimensional wave equation of the form

∂2 f

∂t2
= ∂2 f

∂x2
+ ∂

2 f

∂y2
+ ∂

2 f

∂z2
+ ∂S

∂t
(59)

can be rewritten as a set of first-order derivative equations as

∂ f

∂t
= E∇ · Eg+ S

(60)
∂ Eg
∂t
= E∇ f,

whereEg = (gx, gy, gz). Defining

sx = ∂gy

∂y
+ ∂gz

∂z
+ S

sy = ∂gx

∂x
+ ∂gz

∂z
+ S (61)

sz = ∂gx

∂x
+ ∂gy

∂y
+ S,

we can rewrite (60) as

∂ f

∂t
= ∂gx

∂x
+ sx = ∂gy

∂y
+ sy = ∂gz

∂z
+ sz

∂gx

∂t
= ∂ f/x

∂x
(62)

∂gy

∂t
= ∂ f/y

∂y

∂gz

∂t
= ∂ f/z

∂z
,

where f/x = ∂gx

∂x + sx = f, f/y = ∂gy

∂y + sy and f/z = ∂gz

∂z + sz.
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This forms a system of three sets of monodimensional wave equations alongx, y, andz.
For each system, the coupling with the other directions is formally enclosed in the source
term. A more compact vectorial notation is given by

∂ f

∂t
= E∇ · Eg+ S

∂ Eg
∂t
= E∇ f (63)

Es = [ E∇ · Eg+ S]û− EE∇ · Eg = ∂ f

∂t
û− EE∇ · Eg,

with Es= (sx, sy, sz), Eu = (x, y, z), û = Eu/|u|, and

EE∇ =


∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

 .
2.2.1. Extended Scheme Formulation

In the continuous limit. Having now monodimensional equations, we can apply the
extended algorithm described previously in (24) and (25). We defineδ fx, δ fy, δ fz, δgx,

δgy, δgz, σx, σy, andσz. Writing for the wave equations along thex axis, the extended
scheme can be written here as

∂ f

∂t
= σx · f + ∂gx

∂x
+ σx · δgx + sx (64)

∂gx

∂t
= σx · gx + ∂ f

∂x
+ σx · δ fx(+nc) (65)

∂δ fx

∂t
= σx · δ fx + ∂δgx

∂x
+ σx · gx (66)

∂δgx

∂t
= σx · δgx + ∂δ fx

∂x
+ σx · f + sx (67)

sx = (σy + σz) f + ∂gy

∂y
+ ∂gz

∂z
+ σy · δgy + σz · δgz+ S.

The termnc is here to recall that a numerical correction (as described in the preceding
section) has to be added once the system is discretized.

The complete scheme can be written then in vectorial notation as

∂ f

∂t
= (σx + σy + σz) f + E∇ · Eg+ Eσ · δ Eg+ S (68)

∂ Eg
∂t
= EEσ · Eg+ E∇ f + EEσ · δ Ef (+nc) (69)

∂δ Ef
∂t
= EEσ · δ Ef + EE∇ · δ Eg+ EEσ · Eg (70)

∂δ Eg
∂t
= EEσ · δ Eg+ EE∇ · δ Ef + Eσ f + Es (71)
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Es = [(σx + σy + σz) f + E∇ · Eg+ Eσ · δ Eg+ S]û− (Eσ f + EE∇ · Eg+ EEσ · δ Eg)

= ∂ f

∂t
û− (Eσ f + EE∇ · Eg+ EEσ · δ Eg), (72)

where

Eσ =
 σx

σy

σz

 and EEσ =
 σx 0 0

0 σy 0

0 0 σz

 .
Discretization. By reproducing the discretization described in the one-dimensional case

by (45) and (46), we obtain the system

1t f = σ 〈 f 〉t +
z∑

v=x

1vgv +
z∑

v=x

σv〈δg〉v − S (73)

1t gu = σu〈gu〉t +1u f + σu〈δ fu〉u − 0.51uFu (74)

1tδgu = σu〈δgu〉t +1uδ fu + σu〈 f 〉u − 2〈Fu〉u (75)

1tδ fu = σu〈δ fu〉t +1uδgu + σu〈gu〉u (76)

su = (σ − σu)〈 f 〉t +
z∑

v=x

1vgv +
z∑

v=x

σv〈δg〉v −1ugu − σu〈δg〉u − S (77)

1t Fu = 2 · Gu/δu− su (78)

1t Gu = − 2

δu
〈Gu〉t − 2Fu/δu, (79)

where we have introduced the additional variablesF andG, and whereu = x, y, or z, and∑z
v=x means the sum forv = x, y, andz.

2.3. Application to Maxwell Equations

The Maxwell wave equations are

∂ EB
∂t
= −E∇ × EE

(80)
∂ EE
∂t
= E∇ × EB− EJ,

giving a “truncated” wave equation for the electric field

∂2 EE
∂t2
= −E∇ × E∇ × EE − ∂

EJ
∂t
. (81)

Because the algorithm we have developed applies to full wave equations, it is desirable
to rebuild the Laplacian in the electric field wave equation, leading us to use

∂2 EE
∂t2
= E∇( E∇ · EE)− E∇ × E∇ × EE − ∂

EJ
∂t
− E∇ρ = 1 EE − ∂

EJ
∂t
− E∇ρ. (82)
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We can rewrite it as a system of first-order derivative equations as

∂Ex

∂t
= E∇ · Eu− Jx; ∂ Eu

∂t
= E∇Ex −

 ρ0
0

 (83)

(84)

∂Ey

∂t
= E∇ · Ev − Jy; ∂Ev

∂t
= E∇Ey −

 0

ρ

0

 (85)

(86)

∂Ez

∂t
= E∇ · Ew − Jz; ∂ Ew

∂t
= E∇Ez−

 0

0

ρ

 . (87)

The extended scheme is applied independently on each 3D scalar wave equation on
Ex, Ey, and Ez. The magnetic field, if needed (to push the particles in a particle-in-cell
code for example), is extracted as

Bx = vz− wy

By = wx − uz (88)

Bz = uy − vx.

2.4. Numerical Example

In Fig. 3, we display snapshots of the relaxation of a 2D(Ez, Bx, By) extended system
in response to a sourceJz = H(t, 0) · δ(x0, y0), whereH(t, 0) are the Heaviside and the
delta functions defined as

H(t, t0) =
{

1 whent > t0

0 otherwise
(89)

δ(x0, y0) =
{

1 if (x, y) = (x0, y0)

0 otherwise
(90)

and where(x0, y0) is located at the center of the grid. The moduli ofE, B, δE, andδB are
displayed for two runs withσ = 0 (left column) andσ = −0.1/δx (right column), respec-
tively. We can observe the smoothing that results from the damping of high frequencies
whenσ < 0. We can also verify that we effectively have|E| = |δB| and|B| = |δE|. The
possibility of adjusting the damping of high frequency by adjustingσ , and with it the speed
of high-frequency waves (see Fig. 2), is clearly an advantage. It can be used to damp waves
that have an unphysical behavior (simulation velocity lower than real velocity). This is an
obvious benefit for electromagnetic simulations with relativistic particles where such waves
can trigger numerical Cerenkov instabilities [7].

3. PART II: MESH REFINEMENT ALGORITHM FOR THE WAVE EQUATION

The extended scheme developed in Part I allows the implementation of a mesh refinement
algorithm more naturally than the Yee scheme. We present in this part the boundary condition
in 1D for the interface of two grids in which the extended scheme is used. An obvious
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FIG. 3. Snapshots of the relaxation of a 2D(Ez, Bx, By) extended system in response to a sourceJz =
H(t, 0) · δ(x0, y0) with (x0, y0) located at the center of the grid. The results of two runs are displayed forσ = 0
(left column) andσ = −0.1/δx (right column).

problem in spatially varying the resolution is the treatment of short wavelengths, which can
be resolved in a fine-gridded area but not in a coarser-gridded area. Using the fact that with
the extended scheme, we can treat separately incoming and outcoming waves in different
areas of the grid, we build an interface that filters such waves at the interface. This filtering
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is fundamental in preventing instabilities often reported with mesh refinement algorithms.
We present an algorithm first for spatial mesh refinement and then for space and time mesh
refinement.

3.1. Spatial Refinement Only

We consider the interface of two grids having different resolutions and consider two
solutions, for the waves going respectively forwardE(+) and backwardE(−) (cf. Fig. 4).
The connection with the quantities of the extended scheme used inside the grids is done
using (23).

We write the solutions as

Ei+1
j = E(+)i+1

j + E(−)i+1
j (91)

E(+)i+1
j = α(+)E(+)i

j + β(+)u B(+)i+1/2
j+1/2 − β(+)l B(+)i+1/2

j−1/2 (92)

= (1+ β(+)u − β(+)l

)
E(+)i

j + β(+)u B(+)i+1/2
j+1/2 − β(+)l B(+)i+1/2

j−1/2 (93)

E(−)i+1
j = α(−)E(−)i

j + β(−)u B(−)i+1/2
j+1/2 − β(−)l B(−)i+1/2

j−1/2 (94)

= (1− β(−)u + β(−)l

)
E(−)i

j + β(−)u B(−)i+1/2
j+1/2 − β(−)l B(−)i+1/2

j−1/2 , (95)

whereα(±), β(±)u , andβ(±)l are constant factors to be specified.
We consider the solution for the wave propagating forward only, the solution for the wave

propagating backward being obtained by symmetry. We recall that, from the relation (18)
linking the coefficients, we have

α(+) = 1− β(+)l + β(+)u . (96)

When the grids have the same resolution, we impose

β(+)u = β(+)l = δt

δx
, (97)

giving α(+) = 1.
When the second grid has a mesh size going to infinity(δt/δx2→ 0), we impose the

algorithm to converge to the Sommerfeld outgoing-wave boundary condition at the interface
of the first grid, giving

α(+) = 1− 2α1

1+ α1
(98)

FIG. 4. Two uniform grids connected at location j. The mesh size of the second grid isn times the mesh size
of the first grid. the electromagnetic field is separated in two parts: waves going forward (E[+], B[+] ) and backward
(E[−], B[−1]).
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β
(+)
l = 2α1

1+ α1
= α1

(
1+ 1− α1

1+ α1

)
(99)

β(+)u = 0 (100)

with α1 = δt/δx1 and α2 = δt/δx2. (101)

Similarly, when the second grid has a mesh size going to 0, or, equivalently, when the first
grid has a mesh size going to infinity(δt/δx1→ 0), we impose the algorithm to converge
to an ingoing-wave boundary condition; that is

α(+) = 1+ 2α2

1− α2
(102)

β
(+)
l = 0 (103)

β(+)u = 2α2

1− α2
= α2

(
1+ 1+ α2

1− α2

)
. (104)

The following set of solutions verifies these requirements:

β
(+)
l = α1

[
1+

(
1− α1

1+ α1

)(
α1− α2

α1+ α2

)]
β(+)u = α2

[
1+

(
1+ α2

1− α2

)(
α2− α1

α1+ α2

)]
.

(105)

These coefficients are used in (93). The coefficientsβ
(−)
l andβ(−)u for use in (95) are

obtained by symmetry.
Although other solutions verifying these requirements can be constructed, after a para-

metric study, this set has been found to be the most successful by the author and will be the
only one considered in the paper.

3.2. Space–Time Mesh Refinement

It is also possible to refine in time as well as in space. We split the (E(+), E(−)) solution
at the interface in (E(+)

[1] , E(−)
[1] ) and (E(+)

[2] , E(−)
[1] ) belonging to the first and second grid,

respectively, and will consider a mesh refinement of 1 : 2(δx2 = 2δx1). Nothing changes
inside each grid except that with the coarse grid we now use the time stepδt2 = 2δt1, where
δt1 is the time step used with the fine grid. The values at the interface of the coarse grid
(E(+)

2 , E(−)
2 ) are computed by using the required values beyond the interface in the fine

grid, jumping the unnecessary values (see Fig. 5). The values ofE(−)
1 (direction coarse-

to-fine) are computed with the same algorithm as in the preceding section, using inter-
polated values from the coarse grid. The values ofE(+)

1 (direction coarse-to-fine) are the
values ofE(−)

2 when available at the considered time step or are interpolated from them
otherwise.

The finite-difference formulation of the overall scheme is given for one time step by
(given for bothE(+) andE(−))

1. Bi−1/2→ Bi+1/2; δBi−1/2→ δBi+1/2 inside fine grid using (45)

2. Bi+1/2
j+1/2 = 0.25Bi−1+ 0.75Bi+1; δBi+1/2

j+1/2 = 0.25δBi−1+ 0.75δBi+1
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FIG. 5. Space–time diagram of the space–time mesh refinement scheme given as a visual aid to the reader
(see text for explanations).

3. Ei → Ei+1; δEi → δEi+1 inside fine grid using (45)

4. Ei → Ei+2; δEi → δEi+2 inside coarse grid using (45)

5. E(+)i+2
[2] j = E(+)i

[2] j + δt2
δx2
(B(+)i+1

j+1/2 + E(+)i+1
j−1 )

6. E(−)i+2
[2] j = E(−)i

[2] j + δt2
δx2
(B(−)i+1

j+1/2 − E(−)i+1
j−1 )

7. E(+)i+1
[1] j = (1+ β(+)u − β(+)l )E(+)i

[1] j + β(+)u B(+)i+1/2
j+1/2 − β(+)l B(+)i+1/2

j−1/2 with


β
(+)
l = α1

[
1+

(
1−α1
1+α1

)(
α1−α2
α1+α2

)]
β(+)u = α2

[
1+

(
1+α2
1−α2

)(
α2−α1
α1+α2

)]
,

(106)

whereα1 = δt1/δx1 andα2 = δt1/δx2,

8. E(−)i+1
[1] j = 0.5(E(−)i

[2] j + E(−)i+2
[2] j )

9. Bi+1→ Bi+3; δBi+1→ δBi+3 inside coarse grid using (45)

10. Bi+1/2→ Bi+3/2; δBi+1/2→ δBi+3/2 inside fine grid using (45)

11. Bi+3/2
j+1/2 = 0.75Bi+1+ 0.25Bi+3; δBi+3/2

j+1/2 = 0.75δBi+1+ 0.25δBi+3

12. Ei+1→ Ei+2; δEi+1→ δEi+2 inside fine grid using (45)

13. E(+)i+2
[1] j = (1+ β(+)u − β(+)l )E(+)i+1

[1] j + β(+)u B(+)i+3/2
j+1/2 − β(+)l B(+)i+3/2

j−1/2

14. E(−)i+2
[1] j = E(−)i+2

[2] j

Figure 5 is of great help in following the steps. Steps 1, 3, 4, 9, 10, and 12 concern the
calculations of the extended scheme inside the fine and coarse grids. Steps 2, 8, 11, and 14
are interpolations in time of values needed on the fine grid from values known on the coarse
grid. Steps 5, 6, 7, and 13 compute boundary values.
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3.3. Coefficient of Reflection Measurements

We present results obtained with the interface (93), with (105), for the connection of two
grids. The evolution of the coefficient of reflections and of transmission with respect to the
pulsationω due to the interface was computed using the following procedure.

At the left end of the first grid, the fieldE was imposed to beE(ω, t) = H(t) sin(ωt),
whereH (t) is a Harris function defined as

H(t) =
{ 10− 15 cos(2πLt)+ 6 cos(4πLt)− cos(6πLt)

32 when 0< t < L/c

0 otherwise,
(107)

with L = 1
ng1

and c the speed of waves. This choice ofE(ω, t) is to generate a quasi-
monochromatic signal. Figures 6 and 7 display H(t), E(ω, t) and its Fourier transform
E∗(ω, t).

Let the number of meshes for the first grid beng1 andL1 be its length. In the case where
δx1 < δx2, the length of the second grid was chosen to beL2 = L1 while it wasL2 = 1.5L1

otherwise. The number of meshes of the second grid was thenng2 = L2/δx2.
The results obtained on the system of two grids ((E1,B1) and(E2,B2)) were compared

to those obtained under the same initial conditions on a grid of reference (Eref,Bref) having
the same resolution as the first grid. The coefficient of reflection was computed as

R=
√√√√∑ng1

j=1[(E1( j )− Eref( j ))2+ (B1( j )− Bref( j ))2]δx1∑ng1

j=1[(Eref( j ))2+ (Bref( j ))2]δx1
, (108)

FIG. 6. The Harris functionH(t) andE(ω, t) plotted versus time.
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FIG. 7. The Fourier transform ofE(ω, t) shows that the signal is nearly monochromatic.

while the coefficient of transmission was computed as

T =
√√√√ ∑ng2

j=1[(E2( j ))2+ (B2( j ))2]δx2∑2ng1

j=ng1+1[(Eref( j ))2+ (Bref( j ))2]δx1

. (109)

In all the calculations, the timet is initialized to 0 at the beginning of the run, and the
time stepδt = 0.5δxfine grid is used. The run ended attmax= 2L1/c(ω), wherec(E(ω))
is the velocity of the pulseE(ω) at the pulsationω. It was empirically determined that
c(E(ω)) ≈ (2./δx) arcsin[(δx/δt) sin(ω′δt/2)]/ω′ with ω′ = 1.3ω.

In order to validate the measurement procedure, the coefficient of reflection was also
computed analytically as follows. For a wave of the formE0ei (ωt−kx) propagating at the
interface, and considering a coefficient of reflectionr , we have, using Eq. (92) (we dropped
the (+))

(1− r )eiωδt/2 = (1− r )αe−iωδt/2− (1− r )βue−ik2(ω)δx2/2

+βl e
ik1(ω)δx1/2+ rβl e

−ik1(ω)δx1/2, (110)

giving

|r | =
∣∣∣∣ eiωδt/2− αe−iωδt/2+ βue−ik2(ω)δx2/2− βl eik1(ω)δx1/2

eiωδt/2− αe−iωδt/2+ βue−ik2(ω)δx2/2+ βl e−ik1(ω)δx1/2

∣∣∣∣. (111)

The unknownk1(ω) andk2(ω) are obtained by solving the relation of dispersion in the
first and second grid, respectively, as for (51), and are given by

k1(ω) = −2i

δx1
ln
[
0.5
(
δx1B+

√
δx2

1 B2+ 4
)]

(112)

k2(ω) = −2i

δx2
ln
[
0.5
(
δx2B+

√
δx2

2 B2+ 4
)]

(113)
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FIG. 8. Coefficients of reflection and transmission as a function of frequency at the interface between two
grids having different resolutions for a wave traveling in the direction fine-to-coarse. Three refinements, 1 : 2, 1 : 4,
and 1 : 8, are considered, as well as the limit case 1 :∞ for which the algorithm tends to the one-way absorbing
boundary algorithm.

with

B =
(
eiωδt/2− e−iωδt/2

)
δt

. (114)

The coefficients of transmission and of reflection are given in Fig. 8 for the interface when
the second grid has a lower resolution(δx2 = nδx1, n = 2, 4, 8,∞) than the first grid. In the
casen→∞, the algorithm has for a limit the one-way outgoing-wave boundary condition.
In each of the other cases, it is remarkable to notice that we obtain the same coefficient
of reflection as with the outgoing-wave algorithm for wavelengths below the cutoff of
the second grid. For wavelengths above this cutoff, the coefficient of reflection is notably
reduced by our algorithm compared to the outgoing-wave algorithm.

The case where the second grid has a higher resolution than the first one(δx2 = δx1/

n, n = 2, 4) is displayed in Fig. 9 and Fig. 10. Our algorithm gives a smaller coefficient of
reflection than the outgoing-wave boundary condition, and it amplifies the transmitted signal
up to about 20% at the shortest wavelength, while the outgoing-wave boundary condition
damps the signal at a slower rate.

The coefficients of reflection and transmission have also been measured in the case of
the space-time mesh-refinement; the results are given in Fig. 11 for both direction (fine-to-
coarse and coarse-to-fine).

3.4. Comparison with Other Schemes

3.4.1. Space Refinement Only

The easiest way to build an interface between two grids having different resolutions is to
use a contour path extension of the Yee scheme [5], giving as a solution at the interface
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FIG. 9. Coefficients of reflection and transmission as a function of frequency at the interface between two
grids having different resolutions, for a wave traveling in the direction coarse-to-fine. Two refinements, 1 : 2 and
1 : 4, are considered. The coefficients due to connecting the grids with a one-way absorbing boundary condition
algorithm are also given as a reference.

FIG. 10. Same as preceding figure but transmission coefficients only, with a different scale. At high fre-
quencies, our scheme amplifies the signal up to about 20% while a connection with the outgoing-wave boundary
condition damps the signal at about the same rate.
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FIG. 11. Coefficients of reflection and transmission for a connection of two grids with space–time refinement
1 : 2. The lower axis corresponds to the measurement for waves traveling in the direction fine-to-coarse. The upper
axis corresponds to the coarse-to-fine measurements.

Ei+1
j − Ei

j

δt
= Bi+1/2

j+1/2− Bi+1/2
j−1/2

0.5(δxfine+ δxcoarse)
. (115)

Another way, for a mesh refinement of 1 :n with n odd, if one desires to have a centered
finite difference at the interface, is to compute the solution with theδx of the coarse grid,
jumping to the required value in the fine grid, giving

Ei+1
j − Ei

j

δt
= Bi+1/2

j+1/2− Bi+1/2
j−n/2

δxcoarse
. (116)

For a mesh refinement 1 : 3, the coefficients of reflection were measured for these two
schemes (contour path and “jump”) in the direction fine-to-coarse and are compared with our
new scheme in Fig. 12. We observe that these two schemes give very similar results and give
an amount of reflection significantly larger than our scheme. Especially, they both produce
a coefficient larger than 1 for at least part (if not all) of the frequencies above the cutoff
of the coarse grid. This is a serious problem when considering a sandwich configuration
where a fine grid is embedded between two coarse grids (very likely in practice) because
these frequencies drive then an instability by multiple reflection with amplification at the
interfaces.

3.4.2. Space–Time Refinement

The first scheme we consider, for refinement 1 :n with n odd, uses the solution of
the coarse grid computed by jumping to the required component in the fine grid, as we
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FIG. 12. Coefficients of reflection for space mesh refinement schemes in the direction fine-to-coarse. The
contour path and jump schemes both give at high frequencies reflections of waves with amplification that would
drive an instability in the case of a sandwich configuration.

did to compute the solution “coarse-to-fine” on the coarse grid in our space–time refine-
ment scheme. The solution on the fine grid is then simply interpolated in time (as we
did to compute the solution “coarse-to-fine” on the fine grid in our space–time refinement
scheme).

FIG. 13. Coefficients of reflection of space–time mesh refinement schemes. The new scheme notably reduces
the amount of reflection compared to other schemes.
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Another scheme proposed in [4] derives a local solution at the interface by imposing
conservation of energy at the discrete level to the whole system (fine grid+ interface+
coarse grid). The result is an interface for which the sum of the coefficient of reflection and
transmission is always 1 (with none of them negative), making the system stable.

The coefficients of reflection were measured for these two schemes in the direction fine-
to-coarse and are compared with our new scheme for space–time refinement in Fig. 13. The
first scheme gives a very strong reflection near the cutoff frequency of the coarse grid with
an amplification of the wave up to approximately 10. This scheme will thus be very unstable
for a sandwich configuration. As expected with the energy-conserving scheme, the waves
with a frequency above the cutoff of the coarse grid are completely reflected. This means
that even if the high-frequency waves will not grow in the fine-gridded region, they will be
trapped and if there is a source of waves with components at these frequencies, they will
build up in the fine region.

4. CONCLUSION

In this paper, we have proposed a general form to approximate the wave equation in
centered finite difference depending, for the simplest possible subset, on three constant
parameters to be determined. A relation linking the parameters has been derived, and
it is shown that, unless specific conditions apply, this relation differs according to the
direction of wave propagation. To develop a scheme compatible with any possible set
of parameters, we have developed an “extended” scheme, operating on a linear com-
bination of the components propagating forward and backward, respectively, along an
axis of the system. A boundary condition for accommodating the mesh refinement tech-
nique with the extended scheme has been developed in 1D and has been compared to
other existing schemes. The numerical results show that the reflections produced at the
interface are very small. The results obtained in 1D are very promising, and the extension
of this boundary condition to 2D and 3D will be treated in a paper to follow. An arti-
cle describing an interface between the extended scheme and the Yee scheme is also in
preparation.

APPENDIX

Correction Term for the Extended Scheme

The extended scheme is

∂B

∂t
= σB B+ ∂E

∂x
+ σBδE

∂E

∂t
= σE E + ∂B

∂x
+ σEδB− J

∂δE

∂t
= σEδE + ∂δB

∂x
+ σE B

∂δB

∂t
= σBδB+ ∂δE

∂x
+ σB E + J,

(A.1)
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which can be discretized as

1t B = σB〈B〉t +1x E + σB〈δE〉x
1t E = σE〈E〉t +1x B+ σE〈δB〉x − J

1tδE = σE〈δE〉t +1xδB+ σE〈B〉x
1tδB = σB〈δB〉t +1xδE + σB〈E〉x + 〈〈J〉x〉t .

(A.2)

At the infinitesimal limit(δt → 0,δx→ 0), this system must converge to (A.1) and thus
must verify at this limit (recalling that, by definition,δE = −B andδB = −E)

〈B〉t = −〈δE〉x
〈E〉t = −〈δB〉x
〈δE〉t = −〈B〉x
〈δB〉t = −〈E〉x.

(A.3)

The infinitesimal limit means that any signal Fourier component must have its wave-
length and period covering an infinite number of meshes and an infinite number of time
steps, respectively. This limit is attainable by the discretized system only for a steady state.
Considering thus the discretized system in a steady state with a sourceJ = 1 located at
j = 0, we have

j −3/2 -1 −1/2 0 1/2 1 3/2

J 0 1 0

〈B〉t = B −1 −1 1 1

〈E〉t = E −1 −1 −1

〈δB〉t = δB 1 1 1 1

〈δE〉t = δE 1 0 1

〈δE〉x 1 0.5 −0.5 −1

〈δB〉x 1 1 1

〈B〉x −1 −1 −1 −1

〈E〉x −1 0 1

The condition〈B〉t = −〈δE〉x is obviously not fulfilled, and a correcting term has to be
added to the system, which becomes
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1t B = σB〈B〉t +1x E + σB〈δE〉x + 0.5σB1x〈J〉t
1t E = σE〈E〉t +1x B+ σE〈δB〉x − J

1tδE = σE〈δE〉t +1xδB+ σE〈B〉x
1tδB = σB〈δB〉t +1xδE + σB〈E〉x + 〈〈J〉x〉t .

(A.4)
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